First insights: Population change for Territory Growth Towns, 2001 to 2011

Dr Andrew Taylor (**)

The Northern Institute / Faculty of Law, Education, Business and the Arts

** Statements and opinions in this analysis are solely of the author
1. OUTLINE

This analysis compares and contrasts population change in Territory Growth Towns (TGTs) using Census Usual Residence (UR) counts for 2011, 2006 and 2001. The analysis is at several levels:

- Comparing ‘mega trends’ for TGTs combined with the Northern Territory (NT) and Australia
- Examining clusters of TGTs – especially by population size and age groups
- Internal comparisons of change amongst individual TGTs

In this analysis, not-stated responses to the Census question on Indigenous status are distributed (by age and sex) according to the stated responses for each Indigenous-age-sex cohort.

It should be noted that UR data from the Census make no allowance for Census count issues which have clearly influenced some of the changes reported here. It is not possible to estimate the impact of Census count issues at sub-NT levels using the same methods which are employed by the ABS to generate estimates of Census undercount for the NT as a whole. More importantly, the ABS is not, unlike for the 2006 Census, intending to publish State and Territory estimates of Indigenous undercount (adjustment factors) and this presents further issues for discerning whether and how closely UR data represents what was found ‘on the ground’ at August 2011.

There are numerous methods which might be deployed to adjust TGT Census data for census counting issues. However, in general, it is not possible to know whether:

1. Any specific method is likely to produce a more accurate population profile for individual TGTs than the ‘raw’ UR count.
2. Individual methods for adjusting Census UR counts at sub-NT levels bring about more accurate population profile relative to other methods.

Despite this, much is known about the populations who are subject to high Census count issues – especially undercounting. Consistently, high rates of undercount feature for Indigenous, remote, single, never married and male populations. Consequently, Census count issues are likely to be relatively consistent across TGTs and between Censuses, such that comparing ‘raw’ UR data over time and space remains a valid and valuable exercise.

2. MEGA TRENDS

The Indigenous population of TGTs (combined) grew at around double the rate of the Indigenous population of the Northern Territory (NT) between 2006 and 2011 (Figure 1), at 11% compared to 5% for the NT. The combined UR population (with not stated’s redistributed) of TGTs was 18,374 or 29.9% of the Indigenous population of the NT, up from 16,423 (28.2%) in 2006. Growth rates for the Indigenous population at TGTs were dwarfed by an almost doubling of the non-Indigenous population who regarded a TGT as their place of residence in 2011 (the official definition of place of residence in the Census is to live or intend to live at a place for six months or more).
While in the past the non-Indigenous cohort which was resident at TGTs was small in absolute size, combined they now exceed the size of the Indigenous population at the largest TGT, Maningrida (with a 2011 Indigenous population of 2,057). It is likely that non-Indigenous residential growth has resulted from the ramping up of Australian and Northern Territory Government programs associated with the NTER and other initiatives. While employment data from the Census is not yet available to confirm this, cohort specific growth rates confirm most of the non-Indigenous growth is in the working age groups of 20 to 35 years (Figure2). We also see a ‘bubble’ of non-Indigenous workers aged 55 years to 64 years which indicates ‘escalator migration’ at remote Indigenous settlements in the NT is occurring, as described by Martel et al. (in press). Children resident at TGTs, who are likely the offspring of the emergent non-Indigenous working cohort, are also evident in the data.
Changing ratios of men to women at TGTs can provide valuable insights for assessing their demographic futures. It has previously been postulated (for example, by Taylor, 2011) that populations at remote Indigenous communities in the NT are likely to progressively become ‘more male’ (or male biased as the literature describes it) through the out migration of women. The basis for this idea are similar changes experienced at remote Indigenous communities in developed nations who in the past have exhibited highly similar settlement distributions and population profiles to the NT (Canada, Alaska and nations within in the Nordic Circle). From 2001 to 2011 Census UR data shows that the larger TGTs indeed became more male while the percent female at small TGTs has increased (in aforementioned countries the male bias was first experienced and most noticeable at very small settlements) (Figure 3). Also of note is the predominance of women in the cohort of Indigenous people who were ‘away from home’ on Census night, indicating more women than men who are resident in TGTs but were not there on Census night.

![Figure 3 – Changing percent female in the Indigenous population of TGTs by cluster, 2006 to 2011](image)

Finally, an important 'mega trend' in the national context, although not exclusively a TGT issue, is the continued decline in NT share of the total Australian Indigenous population (refer to Figure 1). While the Indigenous population of the NT rose by 5% in the five years to 2011, for Australia it grew by 20%. This has implications for the distribution of Australian Government revenues to the NT over time. The main cause are disparate numbers of people who identify as being of Aboriginal or Torres Strait Islander (or both) origin in the most recent census (in this case 2011) but who DID NOT do so in the previous Census. Disparate rates of ‘identification’ change are a socio-cultural and not a demographic phenomenon and are having a major effect on the spatial distribution of Australia’s Indigenous population over time. In the NT, Indigenous people are more likely to have already stated they were Indigenous in a prior Census for cultural and historical reasons. For example, NT administrative systems have historically incorporated better methods for capturing and recording the Indigenous status of clients, such as in the health and education systems.

While changing and variable (over space) identification rates are a major non-demographic factor for Indigenous population growth in Australia, a number of other factors are at play. One is increasing rates of mixed partnering, where one partner is Indigenous and one not, primarily in Australia’s large cities. Over several decades this produces a downstream increase in the ‘pool’ from which Indigenous babies can be born, creating further elevated rates of growth in the metropolitan Indigenous population. Highlighting this, in 1996 in Sydney just 12% of Indigenous couples were both Indigenous compared to 27% in the rest of NSW, while in Darwin 32% were both Indigenous compared to 86% outside of Darwin in the NT (Birrell, 2000). These patterns of intermix mean that, even if rates of identification change in cities begin to plateau, mixed partnering will sustain large disparities in the Indigenous population growth rates between the NT and Australia over coming generations. The combined effects of identification change and mixed partnering will be a continuation of large differences in the growth rates and ongoing declines in the NT's...
share of the Australian Indigenous population. Indigenous migration from rural or remote areas to cities, and anticipated reductions in Indigenous fertility, associated with improving educational and economic circumstances for remote living Indigenous Australians, will enhance the size of this growth differential.

3. INTRA-NT INDIGENOUS POPULATION REDISTRIBUTIONS

The Indigenous population of the NT is redistributing internally over time with progressive urbanisation (lower proportions living in remote parts of the NT) being the main pattern. Over the past quarter of a century the equivalent of a medium sized community (on average) has migrated on a net basis to Darwin, Alice Springs or interstate every five years. This pattern is consistent with the global phenomenon of rural to urban migration. However, within this overarching pattern are found diverse and changing patterns of intra-NT settlement distributions in both a temporal and spatial sense (for example, patterns may change between Censuses and between communities). During 2006 to 2011 the Indigenous population of the largest TGTs (with a population of more than 1,000 residents: n=7) grew at a substantially higher rate (17.2% combined) than small (10.4%) and medium sized TGTs (4.4%). Meanwhile the Indigenous population of Alice Springs and Darwin combined (urban NT) grew by 12.6% (Figure 4).

The low rate of growth for medium sized TGTs (at the equivalent of less than 1% per annum) is unlikely to be attributable exclusively to net out migration (although data to determine this are not yet available). Census counting issues both at the 2006 and 2011 Censuses may have influenced these growth rates. Determining the extent of non-demographic influences is problematic, nevertheless further analysis will be conducted to examine whether changes within age-sex cohorts are evident (for example, compared to Indigenous populations of other TGTs or the NT as a whole).

Overall, in comparison to the Indigenous population of the NT as a whole, there was substantially higher growth in the young and youth cohorts (aged zero to 20 years) at TGTs (Figure 5). The indigenous population in the NT and at TGTs is also progressively ‘getting older’ (the term ‘ageing’ is avoided given life expectancies for Indigenous Territorians) as more males begin to live into their 50s and 60s and more females into their 60s and over. Nevertheless the 60 to 64 year cohort at TGTs actually declined from 2006 to 2011. This requires further investigation, particularly given changes in the age groups immediately surrounding. Figure 3 provides some clues insofar as males accounted for most of the decline in this age group. Some of the decline may therefore be explained by older males (especially) leaving permanently for the treatment of chronic illnesses or by the first generation of Indigenous long-term government workers reaching retirement age and choosing to live elsewhere in retirement. Given the relatively small
size of this age group, small numbers choosing to leave can deliver the results seen in Figure 5. Census count issues are also likely to have influenced this result.

Figure 5 - Comparing growth at TGTs to the NT as a whole by age group, 2006 to 2011

There was a striking absolute increase in the Indigenous male population aged 10-14 years and 25-29 years at TGTs from 2006 to 2011 (Figure 6). These are noted in past studies as amongst the hardest cohorts to accurately enumerate in Census and other data collection activities. It may be that enhanced efforts and revised field methods associated with the Northern Australia Unit located at the Darwin office of the ABS for the 2011 Census have influenced these data. A clearer picture will be available once migration data are available in 2013.

Figure 6 - Absolute population change by age and gender at TGTs, 2006 to 2011
4. POPULATION CHANGE AT INDIVIDUAL TGTs

Growth rates at individual TGTs between 2006 and 2011 affirm the findings in Figure 4, with the largest of the settlements growing at above average rates (particularly Kunbarllanjnja, Wadeye, Galiwinku, Nguiu and Ngukurr) and medium sized settlements below average rates (such as Yuendumu, Gapuwiayak and Lajamanu) (Figure 7). Significantly, Kunbarllanjnja and Wadeye, two of the largest TGTs, increased by around a third from the 2006 Census count. The growth rate in Ali Curung is particularly high and indicates a combination of in migration of new residents and Census count issues for 2006. Elliot declined noticeably while Yuendumu and Gapuwiayak also declined slightly.

Figure 7 – Indigenous Growth rates at individual TGTs, 2006 to 2011

Comparing the ranked size (out of 20) of TGTs between 2011 and 2006 helps to demonstrate redistributions of the Indigenous population across TGTs. Yirrkala, Ali Curung and Kunbarllanjnja all moved three ranks up during the intercensal period while Elliot, Lajamanu and Numbulwar fell two ranks (Figure 8). In terms of TGT total population share the large communities of Wadeye, Galiwinku and Kunbarllanjnja all increased their share markedly, and especially Wadeye (Figure 9). The population share of Gapuwiayak, Yuendumu, Angurugu, Maningrida and Lajamanu fell by more than one third of a percent, although Maningrida remained as the largest TGT in 2011 (2,056).
5. A SHORT SUMMARY

This analysis has provided comparisons of population change for TGTs based on UR Census counts, with a focus on comparing change between 2006 to 2011. It finds that the Indigenous population of TGTs grew at double the rate of the NT as a whole; while progressively several non-demographic factors are redistributing the Australian Indigenous population away from the NT and towards metropolitan centres in Australia. Nevertheless the TGT share of the NT Indigenous population increased with the large communities of Wadeye, Kunbarlanjinja and Galiwinku in particular increasing their share of the overall TGT Indigenous population. Meanwhile the non-Indigenous population at TGTs has grown substantially, reflecting increased numbers associated with programs under the NTER and other government initiatives.
Compared to the Indigenous population of the NT, the young and older cohorts at TGTs grew more rapidly despite there being a curios decline in 60 to 64 years age group. While large TGTs have grown substantially, medium sized TGTs have grown at a low rate. There are mixed indications about whether clusters of TGTs according to size are exhibiting changes in their gender profile, with small TGTs becoming more female biased, while the percent female at large TGTs fell markedly from 2006. A number of findings bring into question the influence of Census count issues on the data, however, the ‘locations’ of such issues over time are likely to be quite consistent such that comparisons of UR data over time do on the whole facilitate plausible into the changing populations of TGTs.

References