[image:]

INTRODUCTION TO CLASSIFICATION OF TEXTS USING MACHINE LEARNING: KNN

by Simon Moss

	Introduction

Example
	
Imagine that you have collected a set of grant applications that were successful as well as a set of grant applications that were unsuccessful. You now want to utilize these texts to generate an algorithm that predicts whether future applications will be successful. That is, you want to generate an algorithm or program that can classify texts or documents. This document illustrates a procedure that you can utilise to achieve this goal. The following table illustrates other circumstances in which you might want to achieve this goal.

	Scenario
	Details

	· You want to derive the characteristics of job applicants from the texts they write
	· You have collected texts that various authors have written
· You also know whether these authors exhibit a particular attribute—such as whether they are intelligent or not
· You now want to utilize these texts to generate an algorithm that predicts whether a job applicant will exhibit some characteristic, such as intelligence

	· You want to identify fraud
	· You have collected a series of documents written by experts on some topic as well as documents that were not written by experts
· You now want to utilize these texts to generate an algorithm that predicts whether a document was written by an expert or is a fake

	This document shows you how you can utilise machine learning in R to achieve these goals—a simple variant of a broad topic called natural language processing. Although you can utilise a variety of techniques, this document introduces a simple method, called k nearest neighbours or KNN. This document does not assume knowledge about machine learning or KNN but you might benefit from some familiarity with these topics. To learn about these topics, you could skim this document.

	Overview of this approach

	To develop an algorithm that classifies texts, you need to complete a series of activities. This section outlines these activities. The rest of this document clarifies how to complete these activities.

Download texts or documents

	First, you need to prepare the texts or documents. To achieve this goal

· download the texts onto your computer, preferably your hard drive. You might utilize various web scraping tools to complete this task efficiently.
· store each classification of texts in a separate directory
· that is, if you want to compare successful grant applications and unsuccessful grant applications, you might store these texts in two directories—called class1 and class2

Clean these texts

	Next, you need to clean the texts. That is

· remove texts that are not relevant to the analysis—such as punctuation, spaces, or functional words—like to, and, and at.
· instead, retain meaningful words, including nouns, verbs, adjectives, and adverbs
.

Convert the texts to a document feature matrix

	To conduct machine learning, you need to somehow convert the text to numbers. One method that you can apply is to convert these numbers to a table called a document feature matrix. A document represents the number of times every word appeared in each document. For example, in the following table

· each row corresponds to one document
· the first column labels the document
· the second column classifies the documents
· the other columns specify the frequency of each word

	document
	class
	Australia
	cat
	dog
	test
	wrote
	hello

	1
	success
	4
	14
	12
	10
	8
	3

	2
	success
	1
	3
	5
	0
	3
	5

	3
	success
	5
	0
	0
	8
	6
	3

	…
	…
	…
	…
	…
	…
	…
	…

Subject the data to machine learning: Introduction to KNN

	Finally, you need to subject this table of numbers to machine learning algorithms, such as KNN. In particular,

· you typically utilize about 70% of the documents to develop the algorithm; these documents are called the training data
· you then utilize the other 30% of documents to test the algorithm, called the testing data or hold-out sample

To introduce you to KNN, consider the following scatterplot. On this scatterplot

· the y axis represents the frequency of one word, such as cat
· the x axis represents the frequency of another word, such as dog
· each circle represents one document
· the green circles represent successful applications; read circles represent unsuccessful applications

As this figure shows, the red circles, the unsuccessful applications, tend to coincide with limited use of the word dog. The green circles, the successful applications, tend to coincide with frequent use of the word dog.

[image:]

	Now suppose you want to predict whether a submitted application will be successful. How would you classify the document that appears in the black circle in the following scatterplot? Would you classify the person as red, and thus unlikely to be successful, or green, and thus likely to be successful, based on the frequency of cat and dog?

[image:]

	To reach this decision, the KNN, or K nearest neighbours, algorithm simply determines which class is closest to this circle. To illustrate,

· if the researcher sets K to 1, the algorithm will identify the one data point that is closest to this individual
· in this instance, as revealed in the following scatterplot, a green circle is closest to the candidate who corresponds to the black circle
· so, this applicant is predicted to be successful

[image:]

In contrast, if the researcher sets K to 5, the algorithm will identify the five data points that are closest to this circle. In this instance, as revealed in the following scatterplot, the closest five data points include two green circles and three red circles. Red is more common. So, the applicant should be classified as red—as unlikely to be successful.

[image:]

	Consequently, one of the complications with KNN, is the classification will often depend on the value of K. So, what value of K should you utilise? How can you decide which value to use? The answer is that

· no one single value is appropriate
· but researchers tend to choose a value that equals the square root of the number of rows or participants in the training data.
· for example, if the training sample comprised 25 candidates, K would be set to 5

Lower values of K are too sensitive to outliers. Higher values of K often disregard rare classes. But, in practice, the documents contain more words than merely cat and dog. Documents might contain thousands of words. Therefore, to apply KNN

· you need to construct a graph in thousands of dimensions rather than two dimensions
· and you will need to identify the number of red and green circles that are closest to the black circle—representing the text you want to evaluate
· but, to calculate distance, you cannot actually use a ruler;
· instead, you use a formula that is like measuring distance with a ruler—but somehow measures this distance in more than two dimensions.

To achieve this goal, you can actually use a variety of formulas, such as a measure called Euclidean distance. To illustrate this measure, consider the following graph. Suppose you wanted to measure the distance between the two points at the start and end of the broken arrow. The first point is located at 5.5 and 75. The second point is located at 6.0 and 100.

[image:]

To calculate the Euclidean distance

· first compute the difference between these points on each variable; that is, the difference between 6.0 and 5.5 is 0.5; the difference between 100 and 75 is 25
· now square these differences, generating 0.25 and 625 respectively
· then sum these numbers, to generate 625.25
· finally, square root this answer; the answer, 25.005, is called the Euclidean distance between these points.

	The same formula can be applied if your data comprises thousands of dimensions. That is, the computer could still

· calculate the difference between the two points on each variable or word
· square these differences and sum the answers
· square root this answer
· use this formula to identify the closest points.

In other words, although the example referred to only two words, the same principles can apply when the data comprises thousands of words.

	How to conduct this approach

1 Download R and R studio

This section clarifies how you can actually conduct this approach. Although you can utilise many software tools to apply these methods, this document illustrates how to utilise R to achieve this goal. The reason is that R is free and open source; therefore, you can utilise this tool even after you leave the university or organisation. If you have not used R before and thus need to download this tool

· visit this webpage to download an introduction to R
· read the section called Download R and R studio
· although not essential, you could also skim a few of the other sections of this document to familiarize yourself with R.

2 Download the files

Second, you need to download and store the relevant documents or texts onto your computer, preferably the C drive. If possible, store each class of documents or texts in a separate directory or folder. For example

· suppose you want to compare successful grant applications with unsuccessful grant applications
· you could store the successful grant applications in a folder called class1
· you could store the unsuccessful grant applications in a folder called class2
· if you wanted to compare three kinds of texts, you could store these documents in folders called class1, class2, and class3 respectively

This document assumes you have stored the documents as pdf files. However, you could also store these documents or texts as txt or docx files.

3 Identify the path directory of these documents

Third, to write the code, you need to identify the path directory in which you have stored your documents or texts. You might assume this task is simple. But, actually, this task is perhaps the most challenging facet of this approach. If you are using a Mac

· in Finder, locate one of the files you downloaded
· click the file
· choose File and then Get Info.
· the pathway appears at the top, such as “Macintosh HD > Users > John.
· this pathway can be reduced to /Users/John

If using Windows, in File Explorer

· locate the file
· right click the file
· choose Properties
· the pathways should appear next to Location, such as C:\Users\John

When you write the code, you might need to experiment with a few options, such as C:\Users or c:\Users or even \Users. That is, you might need to refine the code a couple of times before the program works.

4. Enter the code

To conduct this analysis, you need to enter some code into R. To achieve this goal

· in R studio, choose the File menu and then New File as well as R script
· in the file that opens, paste the code that appears in the following table
· to execute this code, highlight all the instructions and press the Run button—a button that appears at the top of this file

This code appears in the following display. At first glance, this code looks absolutely terrifying. But actually

· this code is straightforward once explained later in this document
· you do not need to understand all this code
· do not change the bold characters in this code
· you might need to change a few other characters, depending on the path directory and the number of classes

	
install.packages("tm")
install.packages("plyr")
install.packages("class")
install.packages("readtext")
install.packages("quanteda")
install.packages("class")
install.packages("caret")
install.packages("e1071")

library(tm)
library(plyr)
library(class)
library(readtext)
library(quanteda)
library(class)
library(caret)
library(e1071)

#Import the pdfs from each class to create two dataframes

class1.df <- readtext(paste0("/Users/simonmoss/Documents/Temp/class1/*.pdf"))
class2.df <- readtext(paste0("/Users/simonmoss/Documents/Temp/class2/*.pdf"))

#Convert to a corpus and then to clean tokens

class1.corpus <- corpus(class1.df)
class2.corpus <- corpus(class2.df)
class1.tokens <- tokens(class1.corpus, remove_punct = TRUE, remove_numbers = TRUE, remove_symbols = TRUE)
class2.tokens <- tokens(class2.corpus, remove_punct = TRUE, remove_numbers = TRUE, remove_symbols = TRUE)

#Remove stopwords

class1.tokens.cleaned <- tokens_remove(class1.tokens, pattern = stopwords("en"))
class2.tokens.cleaned <- tokens_remove(class2.tokens, pattern = stopwords("en"))

#Convert to document feature matrices

class1.dfm <- dfm(class1.tokens.cleaned)
class2.dfm <- dfm(class2.tokens.cleaned)

#Remove words that are infrequent

class1.dfm.trimmed <- dfm_trim(class1.dfm, min_termfreq = 0.001, termfreq_type = "prop")
class2.dfm.trimmed <- dfm_trim(class2.dfm, min_termfreq = 0.001, termfreq_type = "prop")

#Add classification to first column

class1.df <-convert(class1.dfm.trimmed, to="data.frame")
class2.df <-convert(class2.dfm.trimmed, to="data.frame")

first.col1 <- rep(1, times=nrow(class1.df))
first.col2 <- rep(2, times=nrow(class2.df))

final.class1.df <- cbind(first.col1, class1.df)
final.class2.df <- cbind(first.col2, class2.df)

names(final.class1.df)[1] <- "classification"
names(final.class2.df)[1] <- "classification"

#Combine the files and remove na

final.df <-rbind.fill(final.class1.df, final.class2.df)
final.df[is.na(final.df)] <- 0

#Identify training and testing data.

set.seed(123)
training.rows <-sample(1:nrow(final.df), size=nrow(final.df)*0.7, replace = FALSE)

final.training.outcomes <-final.df[training.rows, 1]
final.testing.outcomes <-final.df[-training.rows, 1]

final.training.predictors <-final.df[training.rows, -1]
final.testing.predictors <-final.df[-training.rows, -1]

#Norm the predictors and then combine with the outcomes

normalize <- function(x) {

 if (max(x)-min(x) > 0) {return ((x-min(x))/max(x)-min(x))}
 if (max(x)-max(x) == 0) {return (0)}

}

final.training.predictors.normed <- normalize(final.training.predictors)
final.testing.predictors.normed <- normalize(final.testing.predictors)

#Omit NaN and Na

final.training.predictors.normed[is.na(final.training.predictors.normed)] <- 0
final.testing.predictors.normed[is.na(final.testing.predictors.normed)] <- 0

is.nan.data.frame <- function(x)
 do.call(cbind, lapply(x, is.nan))

final.training.predictors.normed[is.nan(final.training.predictors.normed)] <- 0
final.testing.predictors.normed[is.nan(final.testing.predictors.normed)] <- 0

Combine the predictors and outcome

final.training.df <- cbind(final.training.outcomes, final.training.predictors.normed)
final.testing.df <- cbind(final.testing.outcomes, final.testing.predictors.normed)

#Conduct knn

knn.number <- sqrt(nrow(final.testing.df))

knn.output <- knn(train = final.training.df, test=final.testing.df, cl = final.training.outcomes, k=knn.number)

confusionMatrix(table(knn.output, final.testing.outcomes))

	
5. Interpret the output

	Finally, you need to interpret the output. In particular, R will generate output that resembles the following display.

	
 testing.data.outcomes
knn. 3 1 2
 1 0 0
 2 4 6

Accuracy: 0.6
95% CI: (0.2624, 0.8784)
No Information Rate: 0.6
P-Value [Acc > NIR]: 0.6331

Kappa: 0

Mcnemar's Test P-Value: 0.1336

Sensitivity: 0.0
Specificity: 1.0
Pos Pred Value: NaN
Neg Pred Value: 0.6
Prevalence: 0.4
Detection Rate: 0.0
Detection Prevalence: 0.0
Balanced Accuracy: 0.5

This output might initially seem unintelligible but is actually simple to interpret. For example, consider the table of numbers towards the top, called the confusion matrix.

· The top left number is simply the k value: 3
· The rest of the first row and column indicate the possible classes: 1 represents successful applications and 2 represents unsuccessful application
· The two columns represent the number of actual successful and unsuccessful applications
· The two rows represent the predicted number of successful and unsuccessful applications

To illustrate, in the previous table

· 4 of the documents were actually successful but predicted to be unsuccessful
· 6 of the documents were actually successful and predicted to be successful

Overall, the accuracy was .6. That is, 60% of the documents were classified or predicted accurately. However

· the p value exceeds 0.05
· therefore, this accuracy is not better than change
· this algorithm thus does not classify documents accurately

	Understand the R code

	The previous section illustrated how to conduct the analysis. But, if you attempted this analysis, you might have experienced some complications. To resolve these complications, you might need to develop more knowledge about the code. This section imparts this knowledge

Download texts or documents

	The first sections of code prepare R to conduct the analyses as well as upload the texts into R.

	Code
	Explanation or clarification

	install.packages("tm")
install.packages("plyr")
install.packages("class")
install.packages("readtext")
install.packages("quanteda")
install.packages("caret")
install.packages("e1071")

library(tm)
library(plyr)
library(class)
library(readtext)
library(quanteda)
library(caret)
library(e1071)

	· R comprises many distinct sets of formulas or procedures, each called a package
· For example, tm refers to a set of formulas or procedures, called a package, that can be used to manipulate text
· Similarly, plyr, class, readtext, and so forth refer to packages that fulfill other purposes
· install.packages merely installs this package onto the computer

Then

· library then activates this package
· the quotation marks should perhaps be written in R rather than Word; the reason is that R recognises this simple format— " —but not the more elaborate format that often appears in Word, such as “ or ”.

	#Import the pdfs from each class to create two dataframes

	· The computer skips any lines that start with a #
· These lines are usually comments, designed to remind the researcher of the aim or purpose of the subsequent code
· In this example, the comment indicates the following code will import pdf files

	class1.df <- readtext(paste0("/Users/simonmoss /Documents/Temp/class1/*.pdf"))

class2.df <- readtext(paste0("/Users/simonmoss/ Documents/Temp/class2/*.pdf"))

	· This code uploads the files from the relevant directories, such as class1 or class 2
· If these files are text files, you could omit “.pdf”
· If these files are Microsoft Word files, you could use “.doc” or “.docx” instead

· All the documents in the folder class 1 are stored in a container called class1.df
· All the documents in the folder class 2 are stored in a container called class2.df
· The .df is merely a reminder these documents are stored in a particular format, called a data frame.

Clean the texts

	The next set of codes are designed to clean the texts—that is, remove numbers, punctuation, functional words, such as it or the, and other characters that are unlikely to be relevant to the analysis.

	Code
	Explanation or clarification

	class1.corpus <- corpus(class1.df)
class2.corpus <- corpus(class2.df)

	· The code corpus merely converts the documents to another format, called a corpus
· In essence, this format is like a spreadsheet in which each row corresponds to one document or text
· The first column stipulates the name of this text
· The second column stores the text of each document
· Ot columns could represent other features of each document, such as the author

To illustrate, if you entered View(class1.corpus) into the Console, you would generate the following spreadsheet

[image:]

	class1.tokens <- tokens(class1.corpus, remove_punct = TRUE, remove_numbers = TRUE, remove_symbols = TRUE)

class2.tokens <- tokens(class2.corpus, remove_punct = TRUE, remove_numbers = TRUE, remove_symbols = TRUE)
	· This code then converts the corpus into another format, called tokens, that store only the text
· Documents stored in this format are easier to clean
· Indeed, the other arguments, such as remove_punct = TRUE, remove punctuation, numbers, and symbols, such as question marks

	class1.tokens.cleaned <- tokens_remove(class1.tokens, pattern = stopwords("en"))

class2.tokens.cleaned <- tokens_remove(class2.tokens, pattern = stopwords("en"))

	· This code is designed to remove a set of functional words, such as the, it, for, at, during, in, and so forth.
· These functional words, also called stop words, are unlikely to be relevant to the analysis

Convert the text to a document frequency matrix

	Tokens, in essence, comprise all the text, in order, but no other information. Document feature matrices, in contrast, are like containers that store information only on the frequency of each word in the text. The following code is designed to convert the tokens into a data feature matrix--similar to the following display

[image:]

	Code
	Explanation or clarification

	class1.dfm <- dfm(class1.tokens.cleaned)

	· The code converts the data file that is labelled class1.tokens.cleaned to a data feature matrix
· This data feature matrix is labelled class1.dfm

	class2.dfm <- dfm(class2.tokens.cleaned)
	· Same as above

	class1.dfm.trimmed <- dfm_trim(class1.dfm, min_termfreq = 0.001, termfreq_type = "prop")

class2.dfm.trimmed <- dfm_trim(class2.dfm, min_termfreq = 0.001, termfreq_type = "prop")

	· This code then removes the terms that constitute less than .001 or .1% of words

Attach the classification label to each row

	In the previous document feature matrix, in which the words include australian, army, 1st, and close, none of the columns stipulate the class. For example, the column does not indicate whether the document was successful or unsuccessful. Instead, you need to insert a column that indicates whether the document was successful or not—as illustrated in the first column of the following display. The following code is designed to achieve this goal.

[image: A screenshot of a cell phone

Description automatically generated]

	Code
	Explanation or clarification

	class1.df <-convert(class1.dfm.trimmed, to="data.frame")

class2.df <-convert(class2.dfm.trimmed, to="data.frame")

	· This code converts the data frequency matrix to a format called a data frame
· A data frame is basically a spreadsheet—but enables researchers to apply a broader range of operations

	first.col1 <- rep(1, times=nrow(class1.datamatrix))

	· This code generates a sequence of 1s
· The number of 1s equals the number of rows or documents in this directory
· This sequence of 1s is stored in a container called first.col1
· Eventually, this column of numbers will be inserted into the previous data file

	first.col2 <- rep(2, times=nrow(class2.datamatrix))
	· See above—but generates a sequence of 2s instead

	final.class1.df <- cbind(first.col1, class1.df)

	· This code inserts the column of 1s into the data file that stores the successful documents

	final.class2.df <- cbind(first.col2, class2.df)

	· This code inserts the column of 2s into the data file that stores the successful documents

	names(final.class1.df)[1] <- "classification"

names(final.class2.df)[1] <- "classification"

	· This code labels the first column of 1s or 2s

If you now enter View(final.class1.df) into the Console, the following output will appear—and show the first column you created.

[image: A screenshot of a cell phone

Description automatically generated]

	Code
	Explanation or clarification

	final.df <-rbind.fill(final.class1.df, final.class2.df)
	· Until now, the two classes of documents—such as the successful texts and unsuccessful texts—have been stored in separate data frames or spreadsheets
· This code merely combines these two classes of documents

	final.df[is.na(final.df)] <- 0
	· Sometimes, the spreadsheet might contain some cells that include the symbol na—an abbreviation of not available
· This code converts these missing cells to 0s

Separate the documents into training and testing data

	This code is designed to separate the documents into training data and testing data.

	Code
	Explanation or clarification

	set.seed(123)
	· Later, the computer will be asked to identify some random numbers
· This code, however, instructs the computer to begin these random numbers at position 123
· Consequently, you could, if you wanted, identify the same random numbers again

	training.rows <-sample(1:nrow(final.df), size=nrow(final.df)*0.7, replace = FALSE)
	· The command sample identifies a series of random integers
· Note that nrow(final.df) is simply the number of rows or documents in the data file, such as 1000
· Thus 1:nrow(final.df) merely instructs the computer to randomly distill integers between 1 and 1000 in this example

Similarly
· nrow(final.df)*0.7 equals 0.7 times the number of rows or documents, such as 700
· thus size=nrow(final.df)*0.7 actually instructs the computer to randomly identify 700 or so random numbers
· replace = FALSE tells the computer not to repeat these numbers

Ultimately
· this convoluted set of codes merely instructs the computer to generate a series of random integers, such as 10 26 13 27 28.
· the number of random integers equals 70% of the total sample.
· these integers will be stored in a container called training.rows.

To check, simply enter training.rows into the Console.

	final.training.outcomes <-final.df[training.rows, 1]
	· The first line of code extracts the classifications—such as 1 vs 2—from the training data
· To illustrate, suppose the random numbers, generated in the previous step were 10 26 13 27 28.
· This code would extract rows 10 26 13 27 28 from the data file final.df
· The code also extracts only the first column—the column that stores the classification
· These rows would be stored in a container called final.training.outcomes

· If you want to check these containers, simply enter train.data into the Console

	final.testing.outcomes <-final.df[-training.rows, 1]
	· In this instance, the – before training.rows refers to all the rows that are not 1 0 26 13 27 28 and are hence the testing data

	final.training.predictors <-final.df[training.rows, -1]

final.testing.predictors <-final.df[-training.rows, -1]
	· Same as above, but extracts all the columns except column 1.
· Therefore, these data frames present the frequency of each word instead of the classification of each document

Normalise the frequencies

In the data file, some of the words are common and will thus correspond to high numbers in the spreadsheet. Other words are uncommon and thus correspond to low numbers. KNN is often more effective whenever all variables correspond to a similar scale or range. This code, although optional, is designed to normalise the data—to ensure all columns comprise a similar range of numbers.

	Code
	Explanation or clarification

	normalize <- function(x) {

 if (max(x)-min(x) > 0) {return ((x-min(x))/max(x)-min(x))}
 if (max(x)-max(x) == 0) {return (0)}

}
	· This code merely establishes a function or formula that achieves normalizes the data.

	final.training.predictors.normed <- normalize(final.training.predictors)

final.testing.predictors.normed <- normalize(final.testing.predictors)
	· Applies this function to normalize the data

	final.training.predictors.normed[is.na (final.training.predictors.normed)] <- 0

final.testing.predictors.normed[is.na (final.testing.predictors.normed)] <- 0

is.nan.data.frame <- function(x)
 do.call(cbind, lapply(x, is.nan))

final.training.predictors.normed[is.nan (final.training.predictors.normed)] <- 0

final.testing.predictors.normed[is.nan (final.testing.predictors.normed)] <- 0
	· This code again converts missing cells, symbolized by na, to zeros
· Thie code also converts characters that are not numbers, symbolized by nan, to zeros

Conduct the KNN

	The final set of code is designed to conduct the machine learning.

	Code
	Explanation or clarification

	knn.number <- sqrt(nrow(final.testing.df))
	· This code estimates the K value—the square root of the number of rows in the testing sample.

	knn.output <- knn(train = final.training.df, test=final.testing.df, cl = final.training.outcomes, k=knn.number)

	· This code completes the KNN.
· In essence, you merely need to specify the name you assigned to the training data, the testing data, the outcomes of your training data, and the level of K
· The output is simply the predicted outcomes for each participant in the training data
· This output is stored in a container called knn.output
· If you wanted to test one document, you would simply assign this document to the data frame called final.testing.df

	confusionMatrix(table(knn.output, final.testing.outcomes))

	· This code presents the confusion matrix and calculates other relevant statistics
· For example, in addition to the confusion matrix, this code presents the accuracy—or proportion of correct predictions—as well as the confidence interval of this proportion
· The output also presents the sensitivity and specificity

	Variations

	This document, thus far, demonstrated one approach you can apply to classify documents. In practice, however, you might attempt some variations of this approach. For example, you might utilize other machine learning techniques as well and then choose the most effective approach. You could apply and read about

· support vector machines
· adaboost
· random forests, and so forth

Furthermore, in the previous examples, the researcher utilised only the frequency of words to predict which applications will be successful and unsuccessful. But, other patterns in the data could be useful, such as n-grams. For more information, read this document about text analysis.
image1.emf
120

100

80

cat

IQ

EQ

100

120

80

0 2 4 6 8

cat

dog

image2.emf
120

100

80

cat

o O
..
o
o
o ‘o
4

IQ

EQ

100

120

80

0 2 4 6 8

cat

dog

image3.emf
120

100

80

cat

IQ

EQ

100

120

80

0 2 4 6 8

cat

dog

image4.emf
120

100

80

-
’—_~
.//. \\C\D
\
’ K
o ®,
' @ o
\
\
N L/
___,’
0 4 6

IQ

EQ

100

120

80

0 2 4 6 8

image5.emf
120

100

80

cat

IQ

EQ

100

120

80

0 2 4 6 8

5.5, 75

6.0, 110

cat

dog

image6.png
[+ % = - [= Go to file/function ~ Addins ~ [®] Project: (None) ~

remote ©7] Remote project - code.R ®7) Temp R script.R* class1.corpus final.testing.df fir)) Environment History Connections Tutorial -]
A 7 Filter <2 [57 Import Dataset ~ & List ~ -
V1 - "} Global Environment ~
Offer - 3 tiers.pdf The Research Nexus The Research Nexus specialise in... @ class2.corpus Large corpus (17 elements, 1 MB)
documentToAnalysel.pdf Scholarly Dialogue classifications chr [1:2] "classl" "class2"
Range of modules.pdf PROGRAM GUIDE COURSE OVERVIEW ~ COMMERCIAL. .. final.coll num [1:181 1111111111 ...
IRUUniversity ReportSample.pdf JAN 2020 IRU University Report The Research Nexus P... f'!.na'l. -col2 num [1:17]1 2222222222 ...
final.rowl num [1:2] 11
H20062 Moss_ Ramamoorthi 5.20 Clearance.pdf 18 August 2020 A/Prof Simon Moss and Dr. Ramya R... .
final.row2 num [1:2] 2 2
documentToAnalyse2.pdf TOURISMOS: AN INTERNATIONAL MULTIDISCIPLINAR... final.testing.outcomes num [1:11] 1111112222 .
Portfolio - P2M Intro.pdf INDUSTRY ENGAGEMENT: THE PATH TO MARKE... final.training.outcom.. num [1:24] 2111112112 .
Portfolio - project management.pdf INDUSTRY ENGAGEMENT: THE PATHTO MARKE... first.coll num [1:18] 1111111111.
Portfolio - P2M Intermediate.pdf ~ INDUSTRY ENGAGEMENT: THE PATHTO MARKE... first.col2 num [1:17] 2222222222 .
200825-PDF-1CHB-PTI Professional Development... AUSTRALIAN ARMY 1st Close Heal... knn. number 3.3166247903554
. knn.output Factor w/ 2 levels "1","2": 1111112222
200825-PDF-1CHB-PTI Professional Development... AUSTRALIAN ARMY 1st Close Heal...
Pdf 1.pdf Group & Organization Management How... Files Plots Packages Help Viewer =
CDP-5-20-00349 (1).pdf Cultural Diversity and Ethnic Minority P... Ol install | @ Update
CDP-S-20-00349 (2).pdf Cultural Diversity and Ethnic Minority P... Name Description Version
Pdf 2.pdf Elsevier Editorial System(tm) for Pe... System Library
future self.pdf abind Combine Multidimensional Arrays 1.4-5
AINSE Symposium.pdf antiword Extract Text from Microsoft Word Documents 1.3
askpass Safe Password Entry for R, Git, and SSH 1.1
Consultation Proposal for CDU Students - SAMAF.... Cover Letter Thank you for taking the time to review t... R
assertthat Easy Pre and Post Assertions 0.2.1
backports Reimplementations of Functions Introduced Since R- 1.1.8
3.0.0
V] base The R Base Package 4.0.2
base64enc Tools for base64 encoding 0.1-3
BH Boost C++ Header Files 1.72.0-3
bitops Bitwise Operations 1.0-6
boot Bootstrap Functions (Originally by Angelo Canty for S) 1.3-25
brew Templating Framework for Report Generation 1.0-6
broom Convert Statistical Objects into Tidy Tibbles 0.7.0
callr Call R from R 3.43
car Companion to Applied Regression 3.0-9
carData Companion to Applied Regression Data Sets 3.0-4
V] caret Classification and Regression Training 6.0-86
cellranger Translate Spreadsheet Cell Ranges to Rows and Columns 1.1.0
V| class Functions for Classification 7.3-17
cli Helpers for Developing Command Line Interfaces 2.0.2
Showing 1 to 18 of 18 entries, 1 total columns clipr Read and Write from the System Clipboard 0.7.0
cluster "Finding Groups in Data": Cluster Analysis Extended 2.1.0

Console | Rousseeuw et al.

image7.emf
-

200825-PDF-1CHB-PTI Professional Development...
200825-PDF-1CHB-PTI Professional Development...
AINSE Symposium.pdf

CDP-S-20-00349 (1).pdf

CDP-S-20-00349 (2).pdf

Consultation Proposal for CDU Students - SAMAF....
documentToAnalysel.pdf

documentToAnalyse2.pdf

future self.pdf

H20062 Moss_ Ramamoorthi 5.20 Clearance.pdf
IRUUniversity ReportSample.pdf

Offer - 3 tiers.pdf

Pdf 1.pdf

Pdf 2.pdf

Portfolio - P2M Intermediate.pdf

Portfolio - P2M Intro.pdf

Portfolio - project management.pdf

australian

1

1

1

25

25

0

0

0

o O
0

1

3

2

2

2

3

3

army

©O O O O O O O O O O O o o o o

1st

-

O O O O O O O O O O O O O O O =

close

[y

= o= O =

©O O O O O O O O N O o o

health

119
119

O O O O N v N 0 O

=

battalion

(S —

o O O O O O O O O O O o o o o

image8.png
Al

P T —
[T —
Conton oot for U St - A ot

 socomtorninet ot
bt
[—
[———

ey

s e

[T ——
Pttt

—

image9.png
= CHARLES
DARWIN

\&J DARW
~~ UNIVERSITY

